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Where’s the Real Bottleneck 
in Scientific Computing?

Gregory V. Wilson

When I first started doing 
computational science in 

1986, a new generation of fast, cheap 
chips had just ushered in the current era 
of low-cost supercomputers, in which 
multiple processors work in parallel on 
a single problem. Suddenly, it seemed 
as though everyone who took number 
crunching seriously was rewriting his or 
her software to take advantage of these 
new machines. Sure, it hurt—the compil-
ers that translated programs to run on 
parallel computers were flaky, debug-
ging tools were nonexistent, and thinking 

about how to solve problems in parallel 
was often like trying to solve a thousand 
crossword puzzles at once—but the po-
tential payoff seemed enormous. Many 
investigators were positive that within 
a few years, computer modeling would 
let scientists investigate a whole range of 
phenomena that were too big, too small, 
too fast, too slow, too dangerous or too 
complicated to examine in the lab or to 
analyze with pencil and paper.

But by the mid-1990s, I had a nagging 
feeling that something was wrong. 
For every successful simulation of 
global climate, there were a dozen 
or more groups struggling just to 
get their program to run. Their work 
was never quite ready to showcase at 
conferences or on the cover of their local 
supercomputing center’s newsletter. 
Many struggled on for months or years, 
tweaking and tinkering until their 
code did something more interesting 
than grinding to a halt or dividing 
by zero. For some reason, getting to 
computational heaven was taking a lot 
longer than expected.

I therefore started asking scientists 
how they wrote their programs. The 
answers were sobering. Whereas 
a few knew more than most of the 
commercial software developers 
I’d worked with, the overwhelming 
majority were still using ancient text 
editors like Vi and Notepad, sharing 
files with colleagues by emailing 
them around and testing by, well, 
actually, not testing their programs 
systematically at all.

I finally asked a friend who was 
pursuing a doctorate in particle physics 
why he insisted on doing everything the 
hard way. Why not use an integrated 
development environment with a 
symbolic debugger? Why not write unit 
tests? Why not use a version-control 
system? His answer was, “What’s a 
version-control system?”

A version-control system, I explained, 
is a piece of software that monitors 
changes to files—programs, Web 
pages, grant proposals and pretty much 
anything else. It works like the “undo” 
button on your favorite editor: At any 
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do well to pick up 
some tools widely 
used in the software 
industry
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point, you can go back to an older 
version of the file or see the differences 
between the way the file was then and 
the way it is now. You can also determine 
who else has edited the file or find 
conflicts between their changes and the 
ones you’ve just made. Version control 
is as fundamental to programming as 
accurate notes about lab procedures are 
to experimental science. It’s what lets 
you say, “This is how I produced these 
results,” rather than, “Um, I think we 
were using the new algorithm for that 
graph—I mean, the old new algorithm, 
not the new new algorithm.”

My friend was intelligent and 
intimately familiar with the problems 
of writing large programs—he had 
inherited more than 100,000 lines of 
computer code and had already added 
20,000 more. Discovering that he didn’t 
even know what version control meant 
was like finding a chemist who didn’t 
realize she needed to clean her test 
tubes between experiments. It wasn’t 
a happy conversation for him either. 
Halfway through my explanation, he 
sighed and said, “Couldn’t you have 
told me this three years ago?”

As the Twig Is Bent…
Once I knew to look, I saw this 
“computational illiteracy” everywhere. 
Most scientists had simply never been 
shown how to program efficiently. 
After a generic freshman programming 
course in C or Java, and possibly 
a course on statistics or numerical 
methods in their junior or senior year, 
they were expected to discover or re-
invent everything else themselves, 
which is about as reasonable as 
showing someone how to differentiate 
polynomials and then telling them to 
go and do some tensor calculus.

Yes, the relevant information was all 
on the Web, but it was, and is, scattered 
across hundreds of different sites. More 
important, people would have to invest 
months or years acquiring background 
knowledge before they could make 
sense of it all. As another physicist 
(somewhat older and more cynical than 
my friend) said to me when I suggested 
that he take a couple of weeks and learn 
some Perl, “Sure, just as soon as you 
take a couple of weeks and learn some 
quantum chromodynamics so that you 
can do my job.”

His comment points at another 
reason why many scientists haven’t 
adopted better working practices. After 
being run over by one bandwagon 

after another, these investigators are 
justifiably skeptical when someone says, 
“I’m from computer science, and I’m 
here to help you.” From object-oriented 
languages to today’s craze for “agile” 
programming, scientists have suffered 
through one fad after another without 
their lives becoming noticeably better.

Scientists are also often frustrated 
by the “accidental complexity” of what 
computer science has to offer. For 
example, every modern programming 
language provides a library for regular 
expressions, which are patterns used 
to find data in text files. However, each 
language’s rules for how those patterns 
actually work are slightly different. 
When something as fundamental as the 
Unix operating system itself has three 
or four slightly different notations for 
the same concept, it’s no wonder that so 
many scientists throw up their hands 
in despair and stick to lowest common 
denominators.

Just how big an impact is the 
lack of programming savvy among 
scientists having? To get a handle on 
the answer, consider a variation on one 
of the fundamental rules of computer 
architecture, known as Amdahl’s Law. 
Suppose that it takes six months to write 
and debug a program that then has to 
run for another six months on today’s 
hardware to generate publishable 
results. Even an infinitely fast computer 
(perhaps one thrown backward in time 
by some future physics experiment gone 
wrong) would only cut the mean time 
between publications in half, because 
it would only eliminate one restriction 
in the pipeline. Increasingly, the real 
limit on what computational scientists 
can accomplish is how quickly and 
reliably they can translate their ideas 
into working code.

A Little Knowledge
In 1998, Brent Gorda (now at Lawrence 
Livermore National Laboratory) and I 
started trying to address this issue by 
teaching a short course on software-
development skills to scientists at Los 
Alamos National Laboratory. Our aim 
wasn’t to turn LANL’s physicists and 
metallurgists into computer scientists. 
Instead, we wanted to show them 
the 10 percent of modern software 
engineering that would handle 90 
percent of their needs.

The first few rounds had their ups and 
downs, but from what participants said, 
and from what they did after the course 
was over, it was clear that we were on 

the right track. A few techniques, and an 
introduction to the tools that supported 
them, could save scientists immense 
frustration. What’s more, we found that 
most scientists were very open to these 
ideas, which probably shouldn’t have 
surprised us as much as it did. After all, 
the importance of being methodical had 
been drilled into them from their first 
undergraduate lab.

Six years and one dot-com boom 
later, I received funding from the 
Python Software Foundation to bring 
that course up to date and to make it 
available on the Web under an open 
license so that anyone who wants to 
use it is free to do so. It covers tools and 
working practices that can improve 
both the quality of what scientific 
programmers produce, and the speed 
with which they produce it, so that they 
can spend less time wrestling with 
their programs and more doing their 
research. Topics include version control, 
automating repetitive tasks, systematic 
testing, coding style and reading code, 
some basic data crunching and Web 
programming, and a quick survey of 
how to manage development in a small, 
geographically distributed team. None 
of this is rocket science—it’s just the 
programming equivalent of knowing 
how to titrate a solution or calibrate an 
oscilloscope.

On the Hard Drives of Giants
Science is much more than just a body 
of knowledge. It’s a way of doing things 
that lets people separated by oceans, 
decades, languages and ideologies 
build on one another’s discoveries. 
Computers are playing an ever-larger 
role in research with every passing 
year, but few scientific programs meet 
the methodological standards that 
pioneers like Lavoisier and Faraday set 
for experimental science more than 200 
years ago.

Better education is obviously key to 
closing this gap, but it won’t be enough on 
its own. Journals need to start insisting 
that scientists’ computational work meet 
the same quality and reproducibility 
standards as their laboratory work. At 
the same time, we urgently need more 
journals willing to publish descriptions 
of how scientists develop software, 
and how that software functions. 
Faster chips and more sophisticated 
algorithms aren’t enough—if we really 
want computational science to come into 
its own, we have to tackle the bottleneck 
between our ears.


