
A reprint from

American Scientist
the magazine of Sigma Xi, The Scientific Research Society

This reprint is provided for personal and noncommercial use. For any other use, please send a request to Permissions,
American Scientist, P.O. Box 13975, Research Triangle Park, NC, 27709, U.S.A., or by electronic mail to perms@amsci.org.
©Sigma Xi, The Scientific Research Society and other rightsholders

2006 January–February 5www.americanscientist.org

Macroscope

© 2006 Sigma Xi, The Scientific Research Society. Reproduction
with permission only. Contact perms@amsci.org.

Where’s the Real Bottleneck
in Scientific Computing?

Gregory V. Wilson

When I first started doing
computational science in

1986, a new generation of fast, cheap
chips had just ushered in the current era
of low-cost supercomputers, in which
multiple processors work in parallel on
a single problem. Suddenly, it seemed
as though everyone who took number
crunching seriously was rewriting his or
her software to take advantage of these
new machines. Sure, it hurt—the compil-
ers that translated programs to run on
parallel computers were flaky, debug-
ging tools were nonexistent, and thinking

about how to solve problems in parallel
was often like trying to solve a thousand
crossword puzzles at once—but the po-
tential payoff seemed enormous. Many
investigators were positive that within
a few years, computer modeling would
let scientists investigate a whole range of
phenomena that were too big, too small,
too fast, too slow, too dangerous or too
complicated to examine in the lab or to
analyze with pencil and paper.

But by the mid-1990s, I had a nagging
feeling that something was wrong.
For every successful simulation of
global climate, there were a dozen
or more groups struggling just to
get their program to run. Their work
was never quite ready to showcase at
conferences or on the cover of their local
supercomputing center’s newsletter.
Many struggled on for months or years,
tweaking and tinkering until their
code did something more interesting
than grinding to a halt or dividing
by zero. For some reason, getting to
computational heaven was taking a lot
longer than expected.

I therefore started asking scientists
how they wrote their programs. The
answers were sobering. Whereas
a few knew more than most of the
commercial software developers
I’d worked with, the overwhelming
majority were still using ancient text
editors like Vi and Notepad, sharing
files with colleagues by emailing
them around and testing by, well,
actually, not testing their programs
systematically at all.

I finally asked a friend who was
pursuing a doctorate in particle physics
why he insisted on doing everything the
hard way. Why not use an integrated
development environment with a
symbolic debugger? Why not write unit
tests? Why not use a version-control
system? His answer was, “What’s a
version-control system?”

A version-control system, I explained,
is a piece of software that monitors
changes to files—programs, Web
pages, grant proposals and pretty much
anything else. It works like the “undo”
button on your favorite editor: At any

Greg Wilson is an adjunct professor of computer
science at the University of Toronto. His course
material is available at http://www.third-bit.com/
swc. On February 17, as part of the 2006 An-
nual Meeting of the American Association for the
Advancement of Science in St. Louis, Wilson will
be running a workshop on scientific programming
skills, how investigators should acquire them, and
the changes needed in publication and tenure pro-
cedures to ensure quality in computational work.
Address: Room 3230, Bahen Centre for Information
Technology, University of Toronto, Toronto, Ontar-
io, M5S 2E4. Internet: gvwilson@cs.utoronto.ca

Scientists would
do well to pick up
some tools widely
used in the software
industry

6 American Scientist, Volume 94 © 2006 Sigma Xi, The Scientific Research Society. Reproduction
with permission only. Contact perms@amsci.org.

point, you can go back to an older
version of the file or see the differences
between the way the file was then and
the way it is now. You can also determine
who else has edited the file or find
conflicts between their changes and the
ones you’ve just made. Version control
is as fundamental to programming as
accurate notes about lab procedures are
to experimental science. It’s what lets
you say, “This is how I produced these
results,” rather than, “Um, I think we
were using the new algorithm for that
graph—I mean, the old new algorithm,
not the new new algorithm.”

My friend was intelligent and
intimately familiar with the problems
of writing large programs—he had
inherited more than 100,000 lines of
computer code and had already added
20,000 more. Discovering that he didn’t
even know what version control meant
was like finding a chemist who didn’t
realize she needed to clean her test
tubes between experiments. It wasn’t
a happy conversation for him either.
Halfway through my explanation, he
sighed and said, “Couldn’t you have
told me this three years ago?”

As the Twig Is Bent…
Once I knew to look, I saw this
“computational illiteracy” everywhere.
Most scientists had simply never been
shown how to program efficiently.
After a generic freshman programming
course in C or Java, and possibly
a course on statistics or numerical
methods in their junior or senior year,
they were expected to discover or re-
invent everything else themselves,
which is about as reasonable as
showing someone how to differentiate
polynomials and then telling them to
go and do some tensor calculus.

Yes, the relevant information was all
on the Web, but it was, and is, scattered
across hundreds of different sites. More
important, people would have to invest
months or years acquiring background
knowledge before they could make
sense of it all. As another physicist
(somewhat older and more cynical than
my friend) said to me when I suggested
that he take a couple of weeks and learn
some Perl, “Sure, just as soon as you
take a couple of weeks and learn some
quantum chromodynamics so that you
can do my job.”

His comment points at another
reason why many scientists haven’t
adopted better working practices. After
being run over by one bandwagon

after another, these investigators are
justifiably skeptical when someone says,
“I’m from computer science, and I’m
here to help you.” From object-oriented
languages to today’s craze for “agile”
programming, scientists have suffered
through one fad after another without
their lives becoming noticeably better.

Scientists are also often frustrated
by the “accidental complexity” of what
computer science has to offer. For
example, every modern programming
language provides a library for regular
expressions, which are patterns used
to find data in text files. However, each
language’s rules for how those patterns
actually work are slightly different.
When something as fundamental as the
Unix operating system itself has three
or four slightly different notations for
the same concept, it’s no wonder that so
many scientists throw up their hands
in despair and stick to lowest common
denominators.

Just how big an impact is the
lack of programming savvy among
scientists having? To get a handle on
the answer, consider a variation on one
of the fundamental rules of computer
architecture, known as Amdahl’s Law.
Suppose that it takes six months to write
and debug a program that then has to
run for another six months on today’s
hardware to generate publishable
results. Even an infinitely fast computer
(perhaps one thrown backward in time
by some future physics experiment gone
wrong) would only cut the mean time
between publications in half, because
it would only eliminate one restriction
in the pipeline. Increasingly, the real
limit on what computational scientists
can accomplish is how quickly and
reliably they can translate their ideas
into working code.

A Little Knowledge
In 1998, Brent Gorda (now at Lawrence
Livermore National Laboratory) and I
started trying to address this issue by
teaching a short course on software-
development skills to scientists at Los
Alamos National Laboratory. Our aim
wasn’t to turn LANL’s physicists and
metallurgists into computer scientists.
Instead, we wanted to show them
the 10 percent of modern software
engineering that would handle 90
percent of their needs.

The first few rounds had their ups and
downs, but from what participants said,
and from what they did after the course
was over, it was clear that we were on

the right track. A few techniques, and an
introduction to the tools that supported
them, could save scientists immense
frustration. What’s more, we found that
most scientists were very open to these
ideas, which probably shouldn’t have
surprised us as much as it did. After all,
the importance of being methodical had
been drilled into them from their first
undergraduate lab.

Six years and one dot-com boom
later, I received funding from the
Python Software Foundation to bring
that course up to date and to make it
available on the Web under an open
license so that anyone who wants to
use it is free to do so. It covers tools and
working practices that can improve
both the quality of what scientific
programmers produce, and the speed
with which they produce it, so that they
can spend less time wrestling with
their programs and more doing their
research. Topics include version control,
automating repetitive tasks, systematic
testing, coding style and reading code,
some basic data crunching and Web
programming, and a quick survey of
how to manage development in a small,
geographically distributed team. None
of this is rocket science—it’s just the
programming equivalent of knowing
how to titrate a solution or calibrate an
oscilloscope.

On the Hard Drives of Giants
Science is much more than just a body
of knowledge. It’s a way of doing things
that lets people separated by oceans,
decades, languages and ideologies
build on one another’s discoveries.
Computers are playing an ever-larger
role in research with every passing
year, but few scientific programs meet
the methodological standards that
pioneers like Lavoisier and Faraday set
for experimental science more than 200
years ago.

Better education is obviously key to
closing this gap, but it won’t be enough on
its own. Journals need to start insisting
that scientists’ computational work meet
the same quality and reproducibility
standards as their laboratory work. At
the same time, we urgently need more
journals willing to publish descriptions
of how scientists develop software,
and how that software functions.
Faster chips and more sophisticated
algorithms aren’t enough—if we really
want computational science to come into
its own, we have to tackle the bottleneck
between our ears.

